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1. PROJECT OBJECTIVES

Under this contract, Northwest Research Associates (NWRA) performed ionospheric
measurements near and immediately following a maximum in the eleven-year solar activity cycle.
The research conducted fell within Hanscom Technical Areas 3(a), “Ionospheric Effects Research
and Air Force Systems,” and 3(b), “Ionospheric Research Technology,” of the Broad Agency
Announcement VS-00-01 released by the Air Force Research Laboratory (AFRL).

In Technical Area 3(a), NWRA developed and employed techniques that resulted in: (1)
specification of both the background ionosphere and its disturbance structures through periods of
enhanced solar activity, (2) improved understanding of these regions, and (3) elucidated effects of
ionospheric disturbances on communication, navigation, and surveillance systems. To achieve
these ends, we (a) enhanced and maintained GPS receivers, including the Air Force Ionospheric
Measuring System (AN/GMQ-35), at various locations; (b) deployed and operated an NWRA
ITS10S coherent receiving system at Qaanaaq, Greenland; and (c) calibrated, processed, and
analyzed records of total electron content (TEC) and of VHF, UHF, and L-band scintillation
obtained by means of these instruments. Through such analyses and others, we contributed to
characterization of such ionospheric features as the main F-layer trough and polar-cap plasma
patches. This research was directed at end products such as capabilities for local and regional
assessment of transionospheric propagation conditions in near-real time. These research topics are
reported in Sections 2 and 3 and Subsection 4.1.2.2.2.

As a contribution to Technical Area 3(b), we collaborated with scientists and engineers from
AFRL, the Naval Research Laboratory (NRL), and other research organizations in the application of
diagnostic instrumentation to the High-frequency Active Auroral Research Program (HAARP).
Among the HAARP instruments that we applied to ionospheric research are an Ashtech Model Z-
FX GPS receiver for measuring absolute TEC and three NWRA ITS10S receiving systems for
measuring relative TEC and recording scintillation. We continue to post TEC from these
instruments and scintillation records from the latter three on the HAARP Web site for telescience
applications and for decision-making during active experiments. Finally, we focused on inverting
the TEC data tomographically to produce images of the F layer over Alaska. Our participation in
HAARRP and application of its results are reported in Section 4.

2. NON-HAARP GPS TOPICS

2.1 Ionospheric Measuring System (IMS)

2.1.1 IMS Upgrade

A significant endeavor under this contract was upgrade of the Ionospheric Measuring System
(IMS) units to their original design specifications, with other modifications associated with
termination of the Automated Weather Network (AWN) and migration to an Internet-protocol
network. Among the capabilities added to the IMS units were the following:

Scintillation parameters (S4, ) at GPS frequencies;
Scintillation spectral parameters (T, p) at GPS frequencies;
Intensity-scintillation parameters at UHF frequencies;
Automated calibration of TEC measurements;




GPS satellite-exclusion specifications;
Multipath mitigation for TEC and GPS intensity scintillation.

Among the AWN capabilities to be migrated to an Internet-protocol network were the
following:

Delivery of periodic TEC and scintillation (TELSI) reports for GPS data;

Delivery of periodic UHF SCINDA reports;

Delivery of daily Equipment Status Reports (ESR);

Delivery of event-associated Contingency Equipment Status Reports (CESR);

Remote commands to IMS units, including GPS bias settings, satellite selections,
and swapping of active computer units.

A phased development and implementation of the upgrade and modification items was planned
initially, based on the original IMS units deployed between 1994 and 1996 to Otis Air National
Guard Base, MA; Croughton Air Base, UK; Thule Air Base, Greenland; Eareckson Air Force
Station, Shemya, AK; and Ascension Auxiliary Airfield, Ascension Island. In this original plan, the
preliminary network transmission capabilities developed for the 1999 Ascension Island Space
Environment Network Display (SEND) campaign would be augmented and applied as other stations
migrated from the AWN to the Internet-protocol NIPRNET, while the initial GPS scintillation-
index (S4, Oy) reporting would be based on the 2-Hz data already available within the IMS, to be
replaced by values derived from the GPS 20-Hz data when this data collection capability was
developed, and augmented by the GPS scintillation spectral parameters (T, p), which were expected
to be reliably available only from the 20-Hz data.

Concern by AFRL personnel that the original IMS Apollo computers would be unable to
perform the 20-Hz data collection, plus concerns about the age and unavailability of replacement
units for these computers, prompted consideration of a computer upgrade for these GPS data
collection computers. However, early deployment schedule constraints coupled with longer term
software development needs would have posed an extended downtime for fielded IMS units, had
the replacement GPS data collection computers been installed in the original IMS cabinets,
displacing the original computers. Thus, NWRA personnel proposed performing the upgrade by
developing completely new IMS units that could be deployed within the constrained schedule and
would become operational at a later time, when the essential software developments were
completed. This plan maintained IMS operational availability while allowing sufficient time for
development and testing, and also extended the operational lifetime of the IMS units.

Situational needs arising during the developments for the IMS upgrades resulted in new site
selections for several IMS units, with the original IMS unit at Shemya being retained at that site,
with some software upgrades. A new IMS unit was deployed to Ascension Auxiliary Airfield in
September 2001, but never became operational because of network restrictions. A second new IMS
unit was deployed to Thule in October 2001, and became operational in May 2002, replacing the
original IMS unit at that site. The new IMS unit was relocated from the Thule radar building to
South Mountain in October 2002, with the addition of a UHF subsystem, but network access is still
restricted. The IMS units at Otis Air National Guard Base and Croughton Air Base were
deactivated and returned to AFRL. New IMS units were deployed to Kadena Air Base, Okinawa, in
August 2002 and Kwajalein Atoll, Marshall Islands, in September 2002, with subsequent
installations of UHF subsystems in June 2003 at Kadena and July 2003 at Kwajalein. A fifth new
IMS unit remains at the NWRA Nashua office for an unspecified future deployment, with a UHF
subsystem installed. For development and testing efforts, a full assemblage of IMS components,



without a cabinet enclosure, also is operated at the NWRA Nashua office, designated as the
“Benchtop IMS.”

The new IMS units incorporate the former auxiliary operator interface computer as an integral
unit, with redundancy, in the same manner as the GPS data collection processors. The interface
computer, designated as the Console Processor, also assumed the role of the operational monitor for
the GPS data collection computers, denoted as the GPS Processors, replacing the custom device in
the original IMS for this role. The Console Processor also monitors operations of the separate UHF
Processor, provided by SCION Associates. The operation of the Console Processor is monitored by
a small commercial heartbeat monitor unit, which can swap between the two Console Processors. A
diagram of the new IMS cabinet layout appears as Figure 1.

The processors within the IMS cabinet, which is an electromagnetic interference/radio-
frequency interference (EMI/RFI) compliant unit, are connected as a local area network (LAN),
with only the Console Processor having a separate external Internet interface, unique to each IMS
site. The standard LAN addresses for the IMS subsystems are listed in Table 1, and schematics of
the data and electrical connections appear as Figs. 2 and 3, respectively. Automated control of the
GPS Processor by the Console Processor is provided using Telnet scripts, with further provisions
for remote operator access also through Telnet, while access to the UHF subsystem and the
networked disk drive are provided using an Internet browser, with supplementary scripts for
automated operations.

Table 1. Local Area Network Addresses for IMS Subsystems

ConNSOlE PrOCESSOT ...uveuveeririieeeceenieecteeteer s res et s esenes 10.1.1.11
GPS PrOCESSOT ..eevuviviereeenireeseeerenreesenreteensessssnsesesssnsessssesssessssesane 10.1.1.10
UHF PrOCESSOT....ecuviiieeiieeteeireeestesenreeensteesatesesneeessnessssesanessnsasseesss 10.1.1.15
Networked Disk DIive.......coovcviiieeiiiceniiieiiiircecnin s 10.1.1.12
Networked Power Controller..........ceeeveeiieiiniicnnseencneineincsienennnee 10.1.1.13
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Figure 1: Diagram of the IMS components within the cabinet.
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To minimize software revisions, the original GPS Processor capabilities for monitoring the two
(inlet and outlet) temperature sensors and the UPS were retained on that processor, with additional
provisions on the Console Processor to engage in a coordinated system shutdown triggered by
critical conditions reported by the GPS Processor. To avoid unnecessary shutdowns in
circumstances that are tolerable to the new equipment, the temperature constraints were expanded,
so that the warning and shutdown conditions are those appearing in Table 2. Shutdown conditions
prompted by either the temperature sensors or the UPS require intervention by an on-site operation

Table 2. Critical Temperature Values

Under-temperature shutdown: below 10° C for one hour
Low air inlet temperature: 10°C .
Recovery from low temperature: above 12° C, after report for below 10° C
Recovery from high temperature: below38° C, after report for above 40° C
High air inlet temperature: 40°C

Over-temperature shutdown: above 40° C for one hour, or above 45° C




in order to restart the IMS unit.

The expectation of minimizing software developments was somewhat reduced by the need to
accommodate new temperature sensor units with a different communications protocol from the
units used in the original IMS, because of the unavailability of the original temperature sensor units.
Additionally, serial communications switches were incorporated to accommodate signal
degradation problems associated with the dual processor configuration. A similar configuration, as
indicated in Figure 2, also is used for each of the two serial data connections between the GPS
Processors and the GPS receiver.

As for the original IMS units, the GPS receiver provides an accurate time reference for the GPS
Processor, with a tolerance of 0.5 seconds. This time reference is propagated to the Console
Processor and UHF subsystem using the Network Time Protocol.

The networked disk drive originally was developed solely for storage of the IMS data by the
GPS Processor, replacing a common SCSI drive that performed the same role in the original IMS
units. The utilization of this networked drive has been augmented by developing separate access by
the pair of Console Processors, so that the dormant Console Processor can acquire updated files
from the formerly active Console Processor when a swap occurs.

Licensing and maintenance fee considerations for the Matlab software used on the GPS
Processors prompted developments to eliminate Matlab usage. To expedite these developments, the
equivalent computations performed by the Matlab scripts on the GPS Processor were replaced by
Fortran programs on the Console Processor, running in a post-processing mode rather than
integrated with the Ada data collection process on the GPS Processor. This implementation alsc
considerably simplified the automated calibration processing, being developed concurrently.
Consequently, the format and contents of the raw IMS data files were modified significantly, with
the new contents described in Appendix A. Notably, the inclusion of the Sequence ID permitted
more accurate time definitions for the 2-Hz data samples, while the inclusion of the PBEN
permitted reporting of the estimated site coordinates.

The post-processing steps for TEC and 2-Hz scintillation are diagrammed in Figure 4. This
processing is initiated automatically when an IMS archive file is transmitted from the GPS
Processor to the Console Processor. Functions of the individual programs are:

PsGn2Hz — generates sequences of 2-Hz IMS data, with one file for each GPS satellite pass;

PassGnlM - generates tables of 1-minute averages for dispersive group delay (DGD), dispersive
carrier phase (DCP), and calibrated equivalent vertical TEC, with ancillary values and flags, for
each satellite pass;

TECGn15M - generates a table of 15-minute averages for calibrated equivalent vertical TEC, with
ancillary values and flags, containing all satellites for each 15-minute interval;

IMSTELSI - generates a TELSI message, with 15-minute average TEC values and summary
scintillation statistics (currently derived from the 2-Hz data), with a summary scintillation table
also being generated;

GPSSCNDA - generates a GPS SCINDA message, with scintillation statistics (currently derived
from the 2-Hz data).
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Figure 4. Post-processing steps for IMS TEC and scintillation, as performed on the Console
Processor.

Data formats for the 2-Hz pass files, 1-Minute pass files, 15-Minute TEC tabulations, and 15-
Minute scintillation statistics appear in Appendix B. The bias file is a table of GPS satellite
identifiers and associated biases (combined with the receiver bias), derived from either an operator-
initiated calibration or an automated calibration.

The Shemya IMS was upgraded for the new TEC processing in March 2003, in conjunction
with the installation of a replacement Apollo computer for the GPS data collection. Slight
differences in format and longitude range conventions prompted development of an auxiliary
program to convert the new 15-Minute TEC tabulation into the old format used by the Scale Factor
Generator (SFG), which operates at Shemya exclusively.

The TELSI (Total Electron and Scintillation) messages are generated in the format defined for
the original IMS units, for compatibility with the decoding software, operating initially at 55™ Space
Weather Squadron (55SWXS) in Colorado but later transferred to the Air Force Weather Agency
(AFWA) in Nebraska. The original IMS units had provided only TEC information, with the
scintillation statistical and spectral parameters being replaced by filler characters, but the upgraded
IMS units are providing the intensity and phase indices (S4 and o), based on the 2-Hz data. Initial
developments were conducted to determine these scintillation indices and additional scintillation
spectral parameters from 20-Hz data provided by the receiver, but some performance uncertainties
associated with the 20-Hz data and Y-code (GPS decryption) operations have deferred the
completion of this implementation. The analysis and assessment of the 20-Hz data are described in
Appendix C and Appendix D, with a preliminary assessment of the Y-code performance also




appearing in Appendix D. Data collection and preliminary scintillation processing for the 20-Hz
data are being conducted on the upgraded IMS units at Nashua and Thule, with the results being
transmitted to the NWRA Nashua office as they are generated, separately from the TELSI
transmissions. Upgrades of additional receivers for Y-code capability were terminated, after three
receivers were upgraded, based on the uncertain performance advantages. The TELSI format is
described in the original IMS Software Requirements Specification (Draper Laboratory, 1994).

SCINDA (Scintillation Decision Aid) messages are generated for both the GPS and UHF data,
with appropriate accommodation of the different nature of the two types of measurements. The
GPS measurements between a single receiver and multiple satellites, while the equatorial-region
UHF measurements are between two separate receiver/antenna channels and a single
(geostationary) satellite, although for Thule the circumstances are slightly different, with two
distinct satellites being used for the UHF measurements. The processing and transmission for the
separate GPS and UHF SCINDA messages are conducted independently, with the GPS processing
being initiated as an event-driven process (the arrival of an IMS archive file at the Console
Processor) and the UHF processing occurring as a scheduled data retrieval and processing, for every
quarter-hour. The SCINDA format is described in a memorandum from Radex (Caton, 2001).

The daily Equipment Status Report (ESR), initiated at 00:05 UT, was modified significantly in
format, to facilitate interpretation by an operator rather than a decoding program, and somewhat in
content, to report on all the subsystems within the IMS. A sample ESR appears as Table 3.

Table 3. Sample of Revised ESR

Equipment Status Report
Site: Nashua
Date/time: 2003-03-21 00:05 UTC
GPS Processor B
Maximum Inlet Temperature 27°C at time 21:07
Current Inlet Temperature 25°C
Maximum Outlet Temperature 26°C at time 20:58
Current Outlet Temperature 23°C

LRU status:

GPS receiver operational
Outlet Temperature Sensor operational
Inlet Temperature Sensor operational
UPS operational
Scion operational
Console Processor A

Average 0f Lowest Five S4 0.00
Average Of Lowest Five Sigma-Phi 0.009
Loss Of Lock 1643

Receiver Bias 32.6007042 (TEC Unit)

The Contingency Equipment Status Reports (CESR) also were modified in format for
interpretation by an operator, and were initially implemented for transmission using electronic mail
facilities, but administrative network restrictions at the IMS sites have prevented this mode of




transmission, so FTP was implemented as an alternative. CESR are generated for the following
conditions:

Under-temperature shutdown

Low air inlet temperature

Recovery from low temperature

Recovery from high temperature

High air inlet temperature

Over-temperature shutdown

Inlet temperature not available

Outlet temperature not available

Lost communications with inlet temperature sensor

Lost communications with outlet temperature sensor

GPS receiver outage

GPS Processor automatic swap

GPS Processor commanded swap

GPS Processor restart

Power outage shutdown

Commanded shutdown

Lost communications with UPS

System restart

Reboot for UHF subsystem

Power restart for UHF subsystem

Shutdown for UHF subsystem

Missing UHF data file.

The TELSI, ESR, and CESR messages, and, where generated, the UHF SCINDA messages and
20-Hz scintillation summaries, are transmitted to an FTP server at the NWRA Nashua facilities and
ultimately are stored on the IMS Web Server, which was developed as a display and control
interface for the IMS field units. However, communications into most of the IMS field site regional
networks are generally restricted, except for limited time intervals by special arrangement, so the
control capabilities from the IMS Web Server are unimplemented. The anticipated control
capabilities were bias settings for the receiver and satellites, and exclusion status for GPS satellites.
These capabilities are available through the more versatile remote control application (pcAnywhere)
available to the IMS operator at Nashua, with restrictions on the source computer for access and
times of access. The remote control application also permits operating system and application
software updates to be conducted on the fielded units, in response to Time-Compliance Network

Orders (TCNOs).

The data and display items available from the IMS Web Server are as follows:
TELSI messages
UHF SCINDA messages
20-Hz scintillation summaries
ESR messages
CESR messages
Absolute equivalent-vertical TEC plot (versus UT or IPP LT), all data
Absolute equivalent-vertical TEC plot (versus UT or IPP LT), in 9 latitude segments
GPS L1 S, plot (versus UT or IPP LT)
GPS L2 S, plot (versus UT or IPP LT)
GPS o, plot (versus UT or IPP LT)




UHF S, plot

GPS S, threshold plot, by satellite

Satellite time coverage and identifier plot (versus UT or IPP LT)
Satellite and receiver biases

Satellite exclusion/inclusion.

For the original IMS units, the satellite and receiver biases were determined by a TEC
calibration process conducted by the IMS monitoring operator at a central site, for subsequent
installation on the IMS units. Evolutionary enhancements to this process, particularly for the data
pre-processing and quality checking steps of DGD outlier editing and DCP discontinuity
corrections, have reduced the operator time requirements, but still required an operator assessment
of the calibration results before the bias values were installed on the IMS units.

Sufficient developments for both initial data assessment (such as adequate time coverage) and
calibration evaluation have been accomplished to allow implementation of an automated calibration
process, diagrammed in Figure 5, on a daily basis for all of the IMS units. This process is
scheduled for 05:00 UT, which was selected to allow sufficient time for satellite passes initiated
during the previous day to proceed to completion. A report of the calibration processing is
transmitted to the NWRA Nashua facilities, and any updated calibrations are posted on the bias
settings page of the IMS Web Server for the respective site. The bias adjustment for plasmasphere
compensation can be eliminated after a calibration process incorporating the plasmasphere is
validated.

As a result of the IMS modifications, fewer monitoring activities are necessary. Data transfer
from the sites to the central Web Server occurs automatically, as does the display of these data on
the Web site. The automated calibration process runs every day to assure quality data, although an
examination of these results still is conducted. An ESR is issued daily and reports a summary of
IMS operations. CESR are generated when a problem is detected, automatically notifying the
operator. A general periodic review (at least twice a month) still will be necessary to assess overall
system status, especially for trends that may indicate declining performance. Monthly cataloguing
of the data archive tapes also will be necessary (as well as assuring that the tapes are changed each
month at each site). Some additional special provisions are required to sustain the SFG operations
at Shemya. Additional activities are imposed by the networking operations, however, to assure the
current status of all required security updates and to conduct at least preliminary investigations of
transmission outages, to isolate the source of the outage as an IMS unit or the network. Further
activities are required to maintain the operations for the Web Server and associated supporting
computers at the NWRA Nashua facilities.

To address the effects on measurement accuracy caused by multipath resulting from the antenna
environment, preliminary TEC multipath mitigation studies were conducted. A multipath template
for each MBN (2-Hz) pass file can be created by subtracting the phase-averaged DCP from the
DGD. Given a stable multipath environment, this template can be applied to the MBN pass for the
same PRN from a subsequent day. The template and data are aligned by azimuth, elevation, and
time, taking into account a time shift of 3 minutes, 56 seconds earlier for each day‘s difference
between the template day and the data day. Each multipath value in the template is then subtracted
from each corresponding DGD measurement. This de-multipathed MBN pass file continues through
the 1-minute processing, which removes some of the noise through averaging, into 1 MN (1-
minute) pass files.

11




Automated TEC Calibrations

Pre-processing Steps

Preliminary data validation:
Few missing 15-minute archive files (110 required)
Few (or no) missing satellites (24 required)
Dispersive group delay (DGD) outlier editing
Dispersive carrier phase (DCP) discontinuity correction
DGD multipath correction

l If no problems, proceed.

SCORE Processing Steps

Calculate IPP latitude and local time from azimuth and elevation

Perform phase-averaging for DCP alignment to DGD

Perform "cummulative phase-averaging" for zero-order real-time phase-averaging
adjustment

Calibration Validations

Bias comparison to prior reference calibration:
Fitted slope close enough to unity (0.9 < slope < 1.1)
Standard error close enough to zero (error < 2.0 TEC units)
Significant bias change (ldifference! > 1.5 TEC units)
Limitied change in number of satellites (< 2)

If acceptable, proceed.

Calibration Installation Processing

Incorporate zero-order adjustments for real-time phase-averaging
Incorporate bias adjustment for plasmasphere compensation
Install new bias file (also used as reference calibration)

Figure 5. Schematic outline of automated bias calibration. Items not yet automated are
shaded. The “cumulative phase-averaging” step and the associated “zero-order
adjustments” can be eliminated after multipath mitigation is implemented. The
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bias adjustment for plasmasphere compensation can be eliminated after a
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